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A COMPARISON OF NEURAL, FUZZY, EVOLUTIONARY, AND ADAPTIVE APPROACHES 
FOR CARRIER LANDING 

Marc L. Steinberg*& Anthony B. Paget 

Naval Air Systems Command, Flight Controls Branch, CST 5 
Patuxent River, MD 20670 

Abstract 
This paper compares in simulation six control 
approaches for an automated carrier landing design 
problem. The key requirements of this problem are that 
the aircraft must remain within tight bounds on a three 
dimensional flight path while approaching the ship, and 
then touch down in a relatively small area with 
acceptable sink rate, angular attitudes and speed. 
Further, this must be accomplished with limited control 
authority for varying conditions of ship motion, air 
turbulence, radar tracking noise/data delays, and ship 
air wake. The control law approaches examined are: 
fuzzy logic, two neural network approaches, indirect 
adaptive and non-adaptive versions of dynamic 
inversion, and a hybrid approach that combines direct 
and indirect adaptive elements. In some of the cases, a 
genetic algorithm was used to optimize fixed 
parameters during design. The approaches were 
demonstrated on a 6 Degree-of-Freedom simulation 
with nonlinear aerodynamic and engine models, 
actuator models with position and rate saturations, and 
turbulence. Simulation results include statistics for 
landing with damage to both control and lifting surfaces 
in different environmental conditions. 

Introduction 
Adaptive and intelligent flight control approaches have 
arguably reached the level of maturity where it is 
feasible to consider using them for production aircraft. 
This is particularly true of approaches that can be 
implemented with limited authority to augment more 
conventional types of guidance and control laws. 
Examples of this on current Naval aircraft include the 
use of fuzzy logic in the orbit improvement system of 
the E-6A,1 and the simple control law on the F-18E/F to 
deal with stabilator actuator failures. 2 A number of 
more advanced architectures have been successfully 
flight-demonstrated including the use of an adaptive 
neural network to compensate for modeling errors and 
failures on the X-36,3 the use of a static neural network 
to store stability and control parameters for on-line 
control optimization on the ACTIVE F-15,4 and the use 
of on-line parameter identification to compensate for 
simulated failures on the VISTA F-16.5      While it 

appears likely that these types of approaches will have 
an impact on future flight control design, it is not at all 
clear how much impact these approaches will have or 
how best to decide which approach to use for any given 
design problem. This is particularly true because these 
approaches may carry significant new challenges in 
design, analysis, testing, and validation. Further, even 
when well-designed, the use of one of these approaches 
in some circumstances may have a negative impact on 
performance or reliability impact relative to a more 
conventional control law. 

There have been several common design problems that 
have provided some comparisons between different 
advanced flight control approaches. One early example 
is the AIAA design challenge.6 While a few papers 
produced under that challenge were relevant to 
intelligent and adaptive control,7 many of the papers 
dealt with linear multivariable approaches. Further, 
nonlinear approaches have advanced considerably since 
that time. Another important design problem is the 
GARTEUR robust control problem.8 This work is 
notable in the extensive documentation of the methods 
applied and the fairly complex design criteria. The 
GARTEUR study focused on robust approaches and 
included several of the methods used in this paper, such 
as dynamic inversion and fuzzy logic.9"10 A final 
design problem that is currently ongoing and 
particularly relevant is the NASA Guidance and 
Control Study for re-usable launch vehicles." The 
NASA effort has a substantially different type of 
application, but includes several approaches relevant to 
the study described in this paper, such as a similar 
neural network based approach. 

This paper presents results from a broad study to 
compare different intelligent and adaptive flight control 
approaches. The approaches examined in this paper are 
fuzzy logic control, two different versions of neural 
network control, an indirect adaptive dynamic inversion 
control law, a hybrid approach that combines direct and 
indirect adaptive elements, and a scheduled dynamic 
inversion controller, which is used as a baseline. It 
should be emphasized that the point of this work is not 
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to pick winners and losers, but only to provide 
empirical data to show potential strengths and 
weaknesses of each approach on problems with some 
aspects of the complexity of a real aircraft design. All 
of the control laws examined in this paper display 
features that might make them a good choice for certain 
types of design problems. There are also numerous 
variations of each approach that could not be tried 
within the scope of this effort that might yield better 
results. However, for these types of approaches to be 
useful for real production aircraft, control designers 
need to be able to adopt these approaches with a 
reasonable amount of effort to achieve better results 
than they get with whatever approach they are currently 
using. This paper demonstrates how well some of these 
approaches can work when developed with limited 
resources by flight control engineers who have 
experience with the techniques, but are by no means the 
leading experts with that approach. 

Three different but closely related design problems 
have been examined during the course of this study. 
The reason for this is that the relative performance of 
highly nonlinear controllers can be very sensitive to a 
variety of factors in the design problem, such as the 
class of inputs or operating conditions. The initial 
design problem focused on tracking performance during 
simple maneuvers, such as pitch and roll doublets over 
a substantial part of the subsonic flight envelope and 
with a wide range of failure cases.lj The second design 
problem looked at automated recovery over a more 
limited part of the flight envelope and with a smaller set 
of failure cases.14 The final problem, which will be 
examined in this paper, is automatic carrier landing. 
The appeal of carrier landing as a demonstration 
problem is that it is one of the most difficult tasks 
routinely done by Naval aircraft.'3"'6 A carrier landing 
system must precisely control three-dimensional flight 
path, speed, sink rate, and angular attitudes to allow a 
safe ship-board landing. The landing, itself, is 
essentially a precisely controlled crash onto a small 
moving target. The aircraft must stay within tightening 
error bounds as it approaches the carrier, and capture 
one of four closely spaced wires with a hook on the 
back of the aircraft. The aircraft must also make the 
landing with the proper speed and sink rate to avoid 
damage to the aircraft. The small landing area 
combined with significant carrier motion and 
disturbances makes this a very challenging problem. 
This is particularly true because most high performance 
aircraft have unforgiving dynamics at the speeds 
required for carrier approach. Further, an Automatic 
Carrier Landing System (ACLS) must operate with 
limited control authority and accommodate turbulence, 
the carrier's air wake, and significant sensor noise and 
delays. 

There are a number of differences between the design 
problem of this paper and the other two design 
problems examined earlier in this study. First of all, the 
ACLS problem is particularly difficult because it 
combines requirements for tight tracking as in the first 
design problem with the demands of achieving an 
acceptable terminal state under constraints as in the 
second problem. Plus, the ACLS problem has much 
more demanding tracking requirements due to the 
disturbance environment and the need to deal with ship 
motion. The ACLS design problem uses only a very 
limited part of the flight envelope compared to the 
earlier ones. However, this is a particularly challenging 
part of the envelope where actuator rate saturations can 
be extremely important. Finally, there is a unique 
disturbance environment with normal turbulence, the 
ship air wake, and substantial noise in aircraft position 
measurements. The noise is due to a combination of 
errors in radar tracking position and digital sampling 
issues between the shipboard computer and the aircraft 
mission and flight control computers. The noise in the 
command signal suggests some changes from past 
designs to avoid amplifying this noise through the use 
of lead information. 

Design Problem 
The design problem examined in this paper includes the 
following elements: 
1) Start from level flight at a 10,000 ft range from the 
carrier with up to 500 ft. lineup error and 20 ft./sec 
velocity errors. Correct lineup and speed errors and 
intercept and track a 3.5 deg. stabilized glideslope. At 
about 13 sec. before touchdown, take into account ship 
motion.   At 1.5 sec, freeze all outer loop commands. 
2) Avoid waveoffs or aborted landings. Waveoffs are 
considered to have occurred when the altitude or lineup 
errors exceed specified bounds, which tighten as a 
piecewise linear function of distance to carrier. The 
bounds for altitude error are not symmetric and start at 
+450 ft. and -180 ft. at the beginning of the approach 
and decrease to +8 ft. and -5 ft. by 5 sec. before 
touchdown. The bounds for lineup are symmetrical and 
start at 20 ft. at 13 sec. before touchdown and decrease 
to 12.5 ft. by 5 sec. before touchdown. 
3) Avoid rampstrikes. Rampstrikes are considered to 
have occurred when the aircraft's combined altitude 
and pitch attitude would cause a collision when it flies 
over the carrier ramp. 
4) Avoid bolters. Bolters or unarrested landings are 
considered to have occurred when the aircraft hook 
touches down beyond the fourth and final wire. 
5) Avoid hard landings. Hard landings are defined as 
landing with over 18 ft./sec. sink rate or over 260 ft./sec 
total velocity. 
6) Minimize the standard deviation of touchdown 
position and of altitude over the ramp. 
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7) Stay within limits in roll angle, roll rate, and pitch 
angle. The limits are 30 deg. of roll angle, 11 deg./sec. 
of roll rate, and 3 deg./sec. of pitch rate. The reason for 
these fairly restrictive limits is the need to preserve 
safety despite the use of some non-redundant sensors. 
8) Successfully perform the above with ship motion up 
to 1.5 deg. of pitch and 8 ft. of heave. The ship motion 
model had no roll or yaw motion. 
9) Successfully perform the above with lost stabilator, 
aileron, rudder, lost combined aileron and rudder, lost 
combined stabilator and aileron, and lost trailing edge 
flap. The first 3 cases were simulated by negating the 
effect of the control surface on the force and moment 
build-ups in the model. The lost flap was simulated by 
adding increments to the force and moment build-ups 
based on wind tunnel testing of this damage case in 
power approach conditions. It is assumed that there is 
no explicit identification of these failures. 

The aircraft simulation used to generate all results in this 
paper is a high performance aircraft with 2 engines, 2 
stabilators, 2 ailerons, 2 rudders, 2 leading edge flaps, 
and 2 trailing edge flaps. The simulation uses the 
standard equations of motion and kinematic relations 
found in a variety of standard references on flight 
dynamics 

Fx   + FX it = — -- gs\n& + rv-qw 
m 

Fr.,+Frr 
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The components of the aerodynamic forces {FXA,
F
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F
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and moments (lA,mA,nA) are calculated from table look- 
ups. Gross thrust, T, is calculated from the following 
equation: 

T = [\ + ala + a2a
2 Y, (h, M, PIT )[kPu + c] 

where ah a2, c, and k are constants, FT is calculated 
from a table look-up, and Pu is lagged throttle 
position.    The throttle model is a first order linear 

system with a variable time constant and variable rate 
limit based on the value of Pu. The actuator models 
are 2nd order linear systems (except for stabilators, 
which are fourth order) with rate and position limits. 
The turbulence model is the standard Dryden Gust 
model from MIL-STD-1797A17 combined with a carrier 
air wake model close in to the ship. The air wake 
model contains both a random component and a 
deterministic component that increases as ship pitching 
motion increases. This ship motion model is a sum of 6 
sine waves. Radar tracking error for aircraft position 
sensing is white noise passed through a first order 
shaping filter. There is a 100 ms. delay for all 
information sent from the ship. Note that this is 
actually somewhat benign since the actual case has a 
variable delay that ranges from 80 to 200 ms. due to the 
use of asynchronous processors. '8 

Guidance Law and Auto-Throttle 
The controllers all use a modified version of the 
guidance law for the current F-18 Automatic Carrier 
Landing System, which is described in ref. 18. The 
shipboard part of the system uses radar information 
about the aircraft's position to calculate desired sink 
rate and roll angle commands. These commands are 
calculated using a combination of estimated error, 
integrated error, error rate, and error acceleration with 
gains that vary as a function of distance to the ship. Up 
to 13 sec. before touchdown, the altitude errors are 
calculated relative to a stabilized glideslope. After 13 
sec, ship motion is taken into account as well with lead 
compensation. On the aircraft, there is an auto-throttle 
that attempts to maintain a constant angle-of-attack. 
The auto-throttle is fairly complex and uses 
proportional and integral angle of attack feedback 
combined with load factor to provide damping. In 
addition, pitch rate, roll angle, and stabilator command 
signals are used to provide some feedforward 
commands and reduce angle-of-attack changes due to 
maneuvers. 

Controller Descriptions 
Dynamic Inversion (DI) - The baseline control law is 
a Dynamic Inversion (DI) approach shown in Fig. 1, 
which was chosen because it is a fairly mature 
technique. This control law is partly based on the F-18 
HARV control law design of refs. 19-20. The basic 
concept behind Dynamic Inversion is to cancel out the 
aircraft's natural dynamics so it will follow desired 
dynamics inserted by a designer. The input pre- 
processing consisted of limiters that vary as a function 
of velocity, and a first order lag at 10 rad/sec. It was 
not helpful to use lead on the command path due to the 
noise that results from radar tracking position error and 
data delays. 
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The outputs of the input pre-processing are next 
combined with the sensed values of the controlled 
variables to create desired dynamics for the aircraft to 
follow. The controlled variables of the inner loop 
controller were 

y- q + KaAa - pv/u + g I F(cos<j)cos6 - cos6>0) 

r - Kßß - glV(fx>sOsm<l>) 

where K, are fixed gains. This choice of variables is 
used to provide some axis decoupling and to minimize 
angle-of-attack and sideslip variations during pitch and 
roll    maneuvers. The    desired    dynamics    use 
proportional-integral feedback since dynamic inversion 
cannot make the aircraft behave as an ideal integrator in 
the presence of model error and actuator limitations. A 
significant difference from past designs is that the 
derivative of the command in the desired dynamics was 
not used. As a result, the following desired dynamics 
were used 

yd=Kcyc-Kpy + K,\e 

where y is the sensed values of the controlled variables, 
yc is the commanded values of the controlled variables, 
and 

«= yc - y 

For the roll and yaw axis, it was found that values of 
the gains used in previous studies provided reasonably 
good performance. The values were a proportional 
feedback gain of 5, an integral gain of 6.25, and a 
proportional command gain of .5. Assuming perfect 
inversion, this will make the aircraft behave as a first 
order system through a stable pole-zero cancellation. 
The proportional feedback gain provides adequate 
bandwidth, and the substantial integrator gain provides 
sufficient robustness to model uncertainty and damage 
cases. The pitch axis required different gains and 
much more tuning effort due to the difficulties inherent 
in controlling sink rate with pitch rate. The most 
significant change was an increase in the proportional 
command gain to maintain a flat low frequency 
response while increasing the gain magnitude at higher 
frequencies to improve tracking of sink rate. 

The next step is the dynamic inversion block, which 
inverts a state-space model of the aircraft to choose 
desired moment commands that will make the aircraft 
follow the desired dynamics. For the purposes of doing 
inversion, the aircraft model was assumed to be 

maAa + mqq + i,pr - >»äpß + niä(ga /r)(cosOcos(i -cosö0) 

nfß + n,r + npp + npapAa - i}pq + nqq 

q- pß + za&a + (go/J/)(cos0cosf*S-cos#o) 
yfß + PCsiio'o + Aa)-rcosa0 + (go/(/)cos0sin<!S 

p + qlanOsmip + rtan#cos0 

qcostf>-rsm0 
f R   \ I S„„ 1 

8h„ 

*-, 
<L, 

'K. '^ /„.. 0 0 /,__ 
lg nig "'s m6 11A "v m. mK 
lg rig tig 

"i. 
0 0 "*. 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0. 0 0 
0 0 0 0 0 0 0 

(1) 

which can be put in a form of 
y = <t>0(x) + <t>0)iv,0) + B(x)u 
where w, is a vector of stability parameters that vary 
over the  flight envelope, B  is  a  matrix of control 
effectiveness   parameters   that   vary   over   the   flight 
envelope,   and   u   is   the   vector  of control   effector 
commands. 

The desired moment commands were then calculated 
using a standard form of 

^=fc-(<t>
1W+(i)W"'i)) 

Finally, because there are more controls than controlled 
variables, a direct allocation approach21"22 is used to 
determine the commands to the actuators. When the 
control allocator cannot achieve the desired moments, an 
integrator anti-windup approach is used. The stability 
and control parameters used in the inversion and the 
allocation were scheduled with a linear interpolation 
based on Mach number, angle-of-attack, and dynamic 
pressure with angle-of-attack being most important. It 
was also necessary to schedule values of the trim angle 
of attack for the model used. Parameters were 
determined using central difference numerical 
perturbations of the full nonlinear simulation at 108 
flight conditions and so have some error relative to the 
simulation model. 

Indirect Adaptive Controller (IAC) - An indirect 
adaptive version of the above DI controller was created 
by replacing the parameter scheduling block of fig. 1 
with on-line parameter estimation. Parameter 
Identification was used for the stability terms 

for 3 bias terms, and for the control effectiveness terms 
in the B matrix. This included a few cross-coupling 
parameters that are only significant following damage 
cases and are not used in the model for the baseline DI 
controller. This yields a total of 27 parameters that 
need to be identified. 
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The parameter identification approach used was 
Modified Sequential Least Squares (MSLS).5'23 MSLS 
attempts to optimize a cost function that includes both 
the more conventional predicted squared error of the 
estimate over a weighted window of data, and a term 
that penalizes the estimate for deviations from 
constraints. A simplified form of the cost function is 

JW = JZ''(«)''''-(«) + <7(")'X<,(") + p(n)TH\p{n) 
*■ »=/„ 

r(n) = y(n)-0r(n-l)<f>(n) 

q(n) = 0{n) - 0{n -1) 

p(n) = M0(n) - k 

where y is the measurements, 6 is a vector of parameter 
estimates, W0 and Wt are positive diagonal weighting 

matrices, and (j) is a vector of system states and control 
inputs. The constraints q and p penalize the estimate 
for large deviations from a weighted blending of 
previous (temporal) and a priori (spatial) estimates of 
the parameters. The combination of these constraints 
provides fairly well-behaved parameter estimates with 
the proper choice of constraint weightings. However, 
finding good values for the weights along with a 
forgetting factor requires considerable trial and error 
experimentation. For that reason, a genetic algorithm 
was used for initial determination of these fixed 
parameters based on a closed-loop performance 
metric.24 A genetic algorithm was very effective since 
it appeared mainly necessary to get the right order of 
magnitude of the parameters. It was found that a ratio 
of about 15 to 1 in spatial to temporal constraint 
weightings was effective for closed loop control in this 
problem, though it was not clear at all how optimal this 
was. It was easier to find reasonable values of the 
parameters for this problem than for the two earlier 
ones since an adaptation time of several seconds was 
acceptable, and there was considerable excitation. 

An additional modification was made to this controller 
to freeze the values of the estimated parameters at 
approximately 15 sec. before touchdown. This avoids 
deviations in the parameter estimates caused by the 
effect of the ship air wake, which degraded the closed 
loop response in an important part of the approach. It 
was not possible under the scope of this effort to 
determine a better approach to dealing with the carrier 
air wake. 

Neural Network Controller with Linear 
Parameterization (NNL) - The Neural Network 
Controller is another modification of a dynamic 
inversion controller based on the approach of ref. 25. 
The neural network is placed in the desired dynamics 
block of Fig. 1 so that 

y^S'c+Kj.e+JK^ + M'^g 

where wm is a matrix of neural network weights and 

g is a vector of the neural network basis functions. 
Note that unlike in the baseline DI controller, the 
derivative of the command was used. This is necessary 
in order to provide a stability proof with a Lyapunov 
approach. The commands are passed through 2nd order 
filters, which are different for each axis. The use of an 
integrator with the neural network may seem redundant. 
However, this provided better robustness to damage 
cases and significantly improved tracking in the 
presence of the ship air wake and turbulence. The 
neural network had 172 basis functions and its inputs 
were aircraft states and the past output of the desired 
dynamics block passed through a squashing function. 
Adaptation of weights in the neural network was done 
using a slightly modified form of 

w NN = -y{(K,e + K2 je)g + T]\e\wm) 

Where y and rj are positive constants and Kt and K2 

are constants determined based on the values of the 
gains in the desired dynamics block. The first term is 
derived from a Lyapunov stability approach, and the 
second term ensures the boundedness of the neural 
network weights. Choosing acceptable values for the 
fixed parameters in the neural network required 
considerable trial-and-error experimentation since too 
large a value causes oscillations and other undesirable 
behavior while too small a value prevents rapid 
adaptation. In past work, the choice of learning rates 
was automated by running several hundred simulation 
cases at each flight condition with different inputs and 
failure cases, and then reducing the learning rate by 
25% when a significant oscillation in the neural 
network was detected. This was not easy to do in this 
case since the guidance law can cause oscillatory 
behavior due to poor inner loop response. As a result, it 
was necessary to do much tuning by hand. 

Adaptation is halted when actuator saturation occurred. 
There was some experimentation done with the pseudo- 
control hedging method'2 to allow adaptation to 
continue during control adaptation. However, this did 
not yield any significant benefits for this design 
problem, and added some additional undesirable 
complexities to the control law. 

Neural Network Controller with Nonlinear 
Parameterization (NNN) - This controller is similar to 
the   above   neural   network   except   that   it   uses   a 
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nonlinearly parameterized neural network as described 
in ref. 26. The output of this network can be written as 

v = Wa{VrCNL) 

where W and V are adaptive weights and <7 is a sum 
of sigmoidal activation functions of the weighted 
inputs. There are less inputs required for this network 
than the linear one, and tuning of the parameters was a 
bit more difficult. 

Fuzzy Logic Controller (FLC) - Fuzzy Logic Control 
is a machine intelligence approach that can be used to 
incorporate aspects of pilot "intelligence" with more 
conventional control approaches. This can, to a limited 
extent, duplicate some of the ways a pilot might 
respond to an aircraft that was not behaving as expected 
due to damage or failures. The FLC used in this paper 
was based on the Automatic Carrier Landing System of 
refs. 27-28 There were 3 rule bases that control roll, 
pitch, and yaw. Separate rule bases were necessary 
because fuzzy logic controllers can become very 
unmanageable if there are more than a few important 
inputs. The use of somewhat decoupled controlled 
variables and an advanced control allocation approach 
to determine final actuator commands helps alleviate 
the need to do this. The main inputs were error and 
integrated error of the controlled variable. The rules 
that use these inputs make up the majority of the rules, 
and are used essentially to create a nonlinear response 
with lower damping for large errors and higher 
damping for small errors. In addition, a small number 
of rules used some aircraft states and past commands. 
These rules were designed to deal with extreme damage 
or failure cases, and are of the form "if the aircraft is 
doing something substantially different from what was 
commanded, then perform this compensation". The 
membership functions were gaussian to allow smooth 
transition between rules. Initial values of the 
membership functions were determined using the 
stochastic genetic algorithm, although much further 
tuning was required. Each rule base had between 40-55 
rules and outputted commands of desired moments. The 
fuzzy operators have max/min used for or/and, the 
product method is used for implication, and the centroid 
method is used for denazification. As with the earlier 
designs, direct allocation was used to determine the 
actuator commands. Some scheduling was done by 
scaling the inputs to the rule bases based on angle-of- 
attack. However, very little scheduling was required 
since this flight condition is relatively constant during 
the approach. This was a distinct advantage for this 
approach relative to the earlier design problems. 

Hybrid Control Law (HYB) - This control law 
combines the nonlinearly parameterized neural network 
approach and MSLS parameter identification. The 
major change from the above designs was that it was 
necessary to modify some of the parameters to 
minimize adverse interactions between the parameter 
identification and the neural network adaptations. 

Results 
All results were computed in Matlab/Simulink 5.3. For 
each damage and failure case, a set of 5 starting 
conditions and 3 environmental conditions were used. 
The starting conditions were 10,000 ft. range from the 
carrier, lineup errors of 0, 50, 250, 500, and 1,000 ft., 
and initial velocity errors of 20 ft./sec. for the first 2 
cases and -20 ft/sec for the last 3. The 3 environmental 
conditions were no ship motion or turbulence, ship 
motion of .75 deg. maximum pitch with 4 ft maximum 
heave and moderate turbulence, and ship motion of 1.5 
deg. maximum pitch with 8 ft. maximum heave and 
severe turbulence. This added up to a total of 15 
different scenarios. Further, each scenario was run 6 
times to get more meaningful information about 
performance relative to non-deterministic disturbances 
and noise. This leads to a total of 90 runs for each 
damage case. The most significant variations were 
caused by the phase of the ship motion model. 

Fig. 2 shows the boarding rate and percentage of 
excellent landings for the no damage case. Boarding 
rate is defined as landings that are not waveoffs 
(aborted landings), bolters (unarrested landings), or 
ramp strikes. Excellent landings are also not hard 
landings and touchdown between the number 3 and 
number 4 wire only. As can be seen, the results are 
fairly comparable for each of the controllers. The 
missed landings were split roughly evenly between 
waveoffs and bolters, and generally occurred only for 
severe environmental conditions. The fuzzy logic 
controller and the controllers that use on-line 
identification do slightly better. The neural network 
controllers have minimal differences from the baseline 
Dynamic Inversion (DI) controller. The standard 
deviation for the DI controller in touchdown position 
was 28.2 ft. in downrange (X axis) and 3.13 ft. in lineup 
(Y axis). The standard deviation of height over the 
ramp was 2.32 ft. Fig. 3 shows the percent reduction in 
these quantities for all of the controllers relative to the 
DI baseline. The FL controller did the best here due to 
its nonlinear response capabilities, followed by the 
indirect adaptive approaches. Fig. 4 shows the rms 
tracking error in sink rate over the course of the 
maneuver. The fuzzy logic and indirect adaptive 
controllers perform best. 
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Fig. 5 shows the boarding rate and percentage of 
excellent landings for a case with a lost aileron and 
rudder. There is not a severe drop in performance for 
any of the controllers as neither surface is really critical 
for this task. The 2 controllers that use parameter ID 
were the only ones to stay above 90% boarding rate and 
have very comparable results in this metric to the no 
failure case. The standard deviation for the DI 
controller in touchdown position was 28.5 ft. in 
downrange and 3.99 ft. in lineup. The standard 
deviation of height over the ramp was 2.30 ft. Fig. 6 
shows the percent reduction in these quantities for all of 
the controllers relative to the DI baseline. As can be 
seen, each of the other controllers had some significant 
improvements over the baseline controller, particularly 
in the standard deviation of lineup error. Fig. 7 shows 
the rms error in tracking the sink rate command for 
each controller. Some of the adaptive controllers do not 
do as well here. However, this is at least partly due to 
the improved roll performance, which causes larger 
sink rate deviations early in the maneuver but does not 
really affect the final touchdown position. 

Fig. 8 shows the boarding rate and percentage of 
excellent landings for a case with a lost aileron and 
stabilator. There is a much more significant drop in 
boarding rate, though all of the controllers except for 
the dynamic inversion controller are able to maintain 
about an 80% boarding rate. The standard deviation 
for the DI controller in touchdown position was 30.5 ft. 
in downrange and 2.80 ft. in lineup. The standard 
deviation of height over the ramp was 2.29 ft. Fig. 9 
shows the percent reduction in these quantities for all of 
the controllers relative to the DI baseline. As can be 
seen, each of the other controllers had some significant 
improvements, particularly the hybrid approach. 
Finally, fig. 10 shows the rms error in tracking the sink 
rate command for each controller. 

Fig. 11 shows the boarding rate and percentage of 
excellent landings for a case with a lost trailing edge 
flap. This is a very challenging case for a carrier 
landing as can be seen by the poor performance of the 
dynamic inversion controller. There is a much more 
significant drop in boarding rate, though the fuzzy logic 
and the controllers that use parameter identification are 
able to maintain about an 80% boarding rate. The 
standard deviation for the DI controller in touchdown 
position was 33.8 ft. in downrange and 6.01 ft. in 
lineup. The standard deviation of height over the ramp 
was 2.77 ft. Fig. 12 shows the percent reduction in 
these quantities for all of the controllers relative to the 
DI baseline. As can be seen, each of the other 
controllers had some significant improvements, but the 
indirect adaptive approach is particularly notable in its 
reduction of downrange dispersion.     Finally, fig. 13 

shows the rms error in tracking the sink rate command 
for each controller. 

Study Results 
This section will provide some discussion of relative 
results across all three design problems.    For more 
information about the earlier problems, see refs. 13-14. 

The baseline DI controller had fairly good robust 
stability, though it did depart following severe actuator 
failures like hardovers, and damage conditions that 
significantly impacted on the stability properties of the 
aircraft. Its robust performance following failures was 
not as good, as can be seen in this paper, where it 
maintains stability but has much poorer tracking 
performance in some cases than the other approaches. 
It sometimes had poor tracking performance even for 
modest model errors in the key stability derivatives. 
These results show that for a relatively stable aircraft 
with conventional effectors and a fairly accurate design 
model, a well-designed traditional robust control law 
may be capable of dealing with all but the most severe 
failure situations. Thus, there is a clear design trade-off 
between achieving that extra capability to react to 
failures, and paying the additional design costs involved 
with applying the current state of-the-art in adaptive 
and intelligent control laws. The Dynamic Inversion 
(DI) controller was by far the easiest approach to design 
and to re-design for each successive problem, as one 
can use many traditional analysis tools despite the fact 
that it was technically a nonlinear controller. For 
example, it was fairly easy to generate both 
multivariable and single-loop stability margins using 
linearized models and to use these to tune the design. 
The biggest open design issue seems to be how to most 
effectively schedule the stability and control 
parameters, and what degree of accuracy is required. 

The Indirect Adaptive Controller (IAC) generally did 
well on problems where it had at least 1-3 sec. of time 
to adapt. On problems where faster adaptation was 
required, such as automated recovery from a low- 
altitude dive it did poorly compared to some of the 
other approaches. On problems where it had the time, 
though, it was perhaps the best approach at using the 
maximum remaining control resources as effectively as 
possible when used with either dynamic inversion or a 
model predictive control approach. It also had 
particularly good robust performance following the 
transient identification period, though its transient 
performance was sometimes a problem. From a design 
point of view, the experience was mixed. On the 
positive side, indirect adaptive control allows a great 
deal of flexibility to design the underlying control law 
as desired using traditional techniques. On the negative 
side, there are on the order of 100 parameters that need 
to be set (or many more if the off-diagonal terms are 
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used). There is little to help in doing this other than 
some guidelines from past designs that provide a range 
of several orders of magnitude that may or may not be 
the proper place to search. Another problem is that it 
was not clear whether to adjust these parameters to get 
the most accurate open-loop identification or the best 
closed-loop response or some combination thereof. 
There may also be a need to schedule some of these 
parameters as the ID generally did not do as well in 
some parts of the envelope and there was not sufficient 
time under this study to examine how to improve this. 
Another issue was the impact on parameter ID of 
disturbances like the ship air wake. This was avoided 
in this case by stopping adaptation, but may be a 
problem for unexpected unusual disturbances like wind 
shears. 

The neural network approaches were by far the most 
capable of the Lyapunov-based approaches that were 
examined under this study. They did much better than 
either the sliding mode or backstepping controllers in 
terms of ease of design and robust performance and just 
not having occasional unpredictable highly erratic 
behavior. Though, the NN approaches were not always 
as good in terms of robust stability as other direct 
approaches. Compared with all the controllers, the NN 
approaches had particularly fast adaptation in less than 
one sec. and were quite good at dealing with situations 
where time was a factor. Both neural network 
approaches generally were quite effective at dealing 
with changes in control effectiveness, but the nonlinear 
neural network seemed to do significantly better at 
dealing with changes to the aircraft's stability 
properties, particularly in the lateral-directional axes. 
From a design point of view, this type of control law 
was reasonably easy to design. The NN has limited 
effect on the system when errors are small. When 
failures occurred, robust performance was generally 
satisfactory relative to a desired response model when 
the parameters were chosen correctly. This, though, is 
arguably both strength and a weakness. For example, 
in some extreme failure cases the NN did the best job of 
tracking the response model and took the aircraft into 
parts of the envelope it couldn't recover from, while 
other "less capable" controllers did not. Modifying the 
response model in different situations is likely to be an 
important and time-consuming part of the design of this 
type of controller. Flight control laws have typically 
had fairly complex qualitative and quantitative 
requirements, particularly given the need to be a "zero- 
weight" software fix to many problems on the aircraft. 
This creates difficulties when the response model does 
not take into account all of the criteria that might go 
into the design and tuning of a more conventional 
control law, but are not always explicitly and 
quantitatively provided.   Another issue is the setting of 

the adaptation rate to avoid oscillatory behavior. This 
is a particular problem with the network that uses a 
linear parameterization. The proper choice of the 
parameters seems to be linked to the size of the error, 
and so is dependent on having a good idea of the 
maximum error the system will encounter. It may be 
of value to have some type of variable adaptation rate to 
minimize problems with this, and gain-scheduling has 
been used in earlier design problems of this study. 

The hybrid approach often did not do as well as the best 
of the indirect or direct approaches for any given 
problem. However, it also often did better than the 
worst of the indirect or direct adaptive approaches. As 
a result, it may be an effective approach for controllers 
that need some of the capabilities of both across a wide 
range of problems. However, this controller had all of 
the design complexities of both indirect and direct 
approaches combined with additional new problems 
caused by adverse interactions between the 2 adaptive 
elements. 

The fuzzy logic controller had remarkably good robust 
stability for a fixed non-adaptive controller, and can be 
tailored to have excellent performance in narrow 
circumstances such as the ACLS problem. It is quite 
challenging, however, to create a fuzzy logic controller 
that has good performance against a wide range of 
flight conditions and requirements. This is particularly 
true due to the lack of analysis tools that are as effective 
as those that exist for the feedback linearization based 
approaches. There are many uncertain design issues 
dealt with through questionable rules of thumb such as 
membership function type and number, type of 
operators, implication, and defuzzification, stability and 
transient analysis, etc. As a result, fuzzy logic may be 
best if used only for specific tasks that require the use 
of heuristics or nonlinear responses, particularly for 
narrowly defined outer loop and guidance tasks. It is 
not an easy approach to design for inner loop control, 
though it is substantially easier to design for outer loop 
or guidance functions. 

Conclusions 
This paper examines six different intelligent and 
adaptive approaches on a carrier landing problem. The 
baseline Dynamic Inversion approach had good robust 
stability, but had significantly degraded tracking 
responses following some failures that lead to many 
aborted and missed landings. This was particularly true 
for lost stabilator and trailing edge flap cases in severe 
environmental conditions. The other approaches could 
all be designed to have somewhat comparable results on 
many of the failure cases. The Indirect Adaptive 
Control and Hybrid approaches arguably did the best at 
achieving the design criteria. Given the less severe 
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failures and the fact that all failures occur at a trim 
point when there is time to recover meant that the 
slower rate of adaptation was not an issue. Similarly, 
the advantage of knowing more accurate stability and 
control derivatives was quite significant given the 
nature of the problem, and there was ample excitation. 
However, there were some issues with the carrier air 
wake that required some fairly ad hoc fixes for all of 
the adaptive controllers. The Neural Network 
approaches did fairly well, particularly with the 
nonlinear adaptation law and generally improved the 
responses over the baseline. Fuzzy logic was quite 
good due to its very tailored response for tight tracking, 
though it did have more degradation following failures 
than the adaptive approaches. 
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